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Fluctuation cumulant behavior for the field-pulse-induced magnetization-reversal transition
in Ising models
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The universality class of the dynamic magnetization-reversal transition, induced by a competing field pulse,
in an Ising model on a square lattice, below its static ordering temperature, is studied here using Monte Carlo
simulations. Fourth-order cumulant of the order parameter distribution is studied for different system sizes
around the phase boundary region. The crossing point of the cun{fdardifferent system sizegyives the
transition point and the value of the cumulant at the transition point indicates the universality class of the
transition. The cumulant value at the crossing point for low temperature and pulse width range is observed to
be significantly less than that for the static transition in the same two-dimensional Ising model. The finite-size
scaling behavior in this range also indicates a higher correlation length exponent value. For higher temperature
and pulse width range, the transition seems to fall in a mean-field-like universality class.
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I. INTRODUCTION II. MODEL AND THE TRANSITION

The response of a pure magnetic system to time- The model studied here is the Ising model with nearest-

dependent external magnetic fields has been of current intep—e':qht.)or Interaction under a t|me-deper.1den.t external mag-
est in statistical physickl-3|. These studies, having close netic field. This is described by the Hamiltonian,
applications in recording and switching industry, have also 1
got considerable practical importance. These spin systems, __ - ea _
driven by time-dependent external magnetic fields, have ba- H="3 {.EJ} 5SS h(t)Ei S @)
sically got a competition between two time scales: the time
period of the driving field and the relaxation time of the whereJ;; is the cooperative interaction between the spins at
driven system. This gives rise to interesting nonequilibriumsite i andj, respectively, and each nearest-neighbor pair is
phenomena. Time and Oliveira first made a mean-field StUdy denoted by{ . } We consider a square lattice. The static
[4] of kinetic Ising systems under oscillating field. The exis- critical temperature i§8=2/ln(1+ J2)=2.28 ... (in units
tence of the dynamic phase transition for such a system angk j/K ;). At T<T?, an external field pulse is applied, after
its nature have been thoroughly studied using extensivghe system is brought to equilibrium characterized by an
Monte Carlo S|mula}t|ons. Later, mvestlgat!ons Were eX-gquilibrium magnetizationmy(T). The spatially uniform
tended to the dynamic wsponse(tm‘rrgma_gnet&pure ISiNg  field has a time dependence as follows:
systems under magnetic fields of finite-time durafibh All
the studies with pulsed field were made bel®y, the static —hp, tosSt<to+At
critical temperaturgwithout any field, where the system h(t)= ) (2)
gets ordered. A “positive” pulse is one which is applied ] ) 0, otherwise. o
along the direction of prevalent order, while the “negative”  Typical time-dependentresponse magnetizationm(t)
one is applied opposite to that. The results for the positivd =(S;), where (---) denotes the thermodynamic “en-
pulse case did not involve any new thermodynamic siGgle  semble” average of the system under different magnetic
In the negative pulse case, however, interesting features wef@ld h(t) are indicated in the Fig. 1. The tintg at which the
observed5]: the negative field pulse competes with the ex-Pulse is applied is chosen such that the system reaches its
isting order, and the system makes a transition from on@quilibrium atT (<TJ). As soon as the field is applied, the
ordered state characterized by an equilibrium magnetizatiomagnetizatiorm(t) starts decreasing, continues until time
+m, (say to the other equivalent ordered state with equi--l—At when the field is withdrawn. The system relaxes even-
librium magnetization—m,, depending on the temperature tually to one of the two equlibrium staté¢with magnetiza-
T, field strengtth,, and its duration\t. This transion is well ~ tion —mg or +mo). At a particular temperaturg, for ap-
studied in the limitAt— for any nonzero value ofi, at ~ propriate combinations oh, and At, a magnetization-
anyT<T2. This transition, for the general cases of finitg reversal transition occurs, when the magnetization of the
is called here “magnetization-reversal” transition. Some as-System switches from one state of equilibrium magnetization
pects of this transition has been recently studied extensivelffo to the other with magnetization m,. This reversal phe-
[3,6]. nomena afr<T8 is simple and well studied foAt—o for
any nonzerch,. We study here the dynamics for finitet
values. It appears that generaly—o as At—0 andh,
*Email address: arnab@cmp.saha.ernet.in —0 asAt—o for any such dynamic magnetization-reversal
"Email address: bikas@cmp.saha.ernet.in transition phase boundary at any temperaflire<TY). In
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magnetizatioristarting fromm,, att=t+ At) relaxes back to
its final equilibrium valuet my, with a relaxation timg¢3,5]

1 mg
~ g M
(T0-T)

) . (5

My,

It diverges at the magnetization-reversal transition boundary,

Of—-—-7 wherem,, vanishes. The prefactor gives the divergence of
i at the static mean-field transition temperature, and is respon-
I i sible for critical slowing down phenomena at the static tran-
'0-5‘hp(1—>'r----4' (2) ---- 1) sition point (h=0). The other factor gives the diverging
i lse—m,o e h® ) time scale, at any temperature below the static transition
Ch@ 1 e m®) temperature, where magnetization reversal occuns,pvan-
i g > e, ishes due to appropriate combinationhgfandAt. The so-
. | . | . | . | lution of the susceptibilityy(q) gives[3]
200 250 300 350
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(TMf—T) In( my @)

dn}

t x(q)~exp — &%), (6)

FIG. 1. Typical time variation of the response magnetizationyyhere the correlation length is given by

m(t) for two different field pulsed(t) with sameAt for an Ising

system at a fixed temperatufe The magnetization reversal here

occurs due to increased pulse strength, keeping their width &~ )

same. The transition can also be brought about by increasing

keepingh, fixed. The inset indicates the typical phase boundaries

(where the field withdrawal-time magnetization, = 0) for two Here too, the prefactor ily gives the usual divergence at

different temperature¢sequential updating; note that for random To'', while the other factor gives the divergence at the

updating the phase boundaries shift upwards magnetization-reversal transition point. Incorporating fluc-

tuations, extensive Monte Carlo simulation studies have also
fact, a simple application of the domain nucleation theoryconvincingly demonstrated6] that the fluctuation in the
gives hyln At=const along the phase boundary, where theorder parametefm,| and in the internal energy of the
const changes by a factor dif 1), whered denotes the system grows with the system size and diverges at the
lattice dimension, as the boundary changes from single tonagnetization-reversal transition boundary, whetg van-
multidomain regiorn 5]. ishes.

A mean-field study of the problem gives a qualitative un-

derstanding of the diverging time and length scales devel-  ||. MONTE CARLO STUDY AND THE RESULTS

oped near the transition boundaiip the hy-At plane at a ) .

fixed T<T°) Mean-field approximation for the dynamics Here, the Monte Carlo study has been carried out in two

gives the equation of motion for the average magnetlzatloﬁilmensmns(square lattice with periodic boundary condi-

m; as tions. Spins are updated following Glauber dynamics. The
updating rule employed here are both sequential as well as
random. In sequential updating rule one Monte Carlo step

> Jijm+h(t) consist of a complete scan of the lattice in a sequential man-

=—m+tanh, —————— . 3) ner; while in random updating a Monte C_arlo step !s defined
dt T by N (=L?) random updates on the lattice, whé\ds the
total number of spins in a lattice of linear site Studies

This equation, linearized near the magnetization-reversadave been carried out at temperatures below the static critical

transition point, gives, for uniform magnetization, temperature T0=2.27). The system is allowed to evolve
from an initial state of perfect order to its equilibrium state at

m(t)= ﬂ_ (ﬁ_ exp{ﬂ(t—t )} (4) temperaturdl. The timet, is chosen to be much larger than
0 ’ . . .
AT T the static relaxation time at th@t so that the system reaches
an equilibrium state with magnetizationmg(T) before the

as a solution of Eq(3), for to<t<ty+At. HereAT=T7'"  external magnetic field is applied at time=t,. The field

—T, whereT™=J(q=0) is the static critical temperature in pulse of strength-h, is applied for duration\t (measured

the mean-field approximation arddq) is the Fourier trans- in Monte Carlo steps or MOSThe magnetization starts de-

form of the interactionJ;; . Due to application of the field creasing from its equilibrium value,. The average value of

h,, m(t) decreases in magnltude from(tg)=mg to m(t,  the magnetizatiom,, at the time of withdrawal of pulse is
+At)=m,, at the time of withdrawal of the pulse. Due to noted. The phase boundary of this dynamic transition is de-
absence of fluctuation here, magnetization relaxes back to iftned by appropriate combination bf, andAt that produces
original valuem if m,, is positive, or to a value-mg if m,,  the magnetization reversal by makimg(t,+At)=m,=0

is negative. In thet>ty+ At regime, whereh(t)=0, the from a valuem(ty)=m,, i.e., m, changes sign across the
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FIG. 2. Behavior ofU near the transition, driven big) T at a fixed value oh, (=1.9) andAt (=5) with sequential updatingb) h,
at a fixed value off (=0.5) andAt (=5) with sequential updating, ar(d) h, at a fixed value off (=0.5) andAt (=5) with random
updating, for different., averaged over 1000—20000 initial configurations. The fluctuations are smaller than the symbol size. The insets
show the typical behavior of the magnetizatiop, at the time of withdrawal of the field pulse by varyit@ T at a fixedh, and At, for
L=100 and 800(b) h, at a fixedT andAt, for L=100 and 400/c) h, at a fixedT andAt, for L=50 and 200;m,,=0 at the effective
transition point(d) Finite-size scaling study in this parameter range: the effedtiver h; values(see the insejswherem,,=0, are plotted
againstL ~” with »~*=0.7. The values of the cumulant crossing pointganr-(c) are taken to correspond the respective transition points
for L—o.

phase boundary. The phase boundary changes Wwitthe  with a Gaussian fluctuation above the transition point, giving
behavior of different thermodynamic quantities are studiedJ —0 there. Here, however, due to the presence of the
across the phase boundary. These quantities are averagedsed field, |m,| is nonzero on both sides of the
over 1000-20000 different initial configurations of the sys-magnetization-reversal transition. Hentkegrops to zero at a
tem. The fluctuations over the average value are also noteg,oint near the transition and grows again after it.

Here, we study the behavior of the reduced fourth-order The universality class of the dynamic transition in Ising
cumulantU [7] near the magnetization-reversal transition. node| under oscillating field has been studied extensively by

This is defined as investigating 2] the critical point and the cumulant valug
4 at the critical point, where the cumulant curves cross for
U=1— (M) (8) different system sizek. In that case, of course, the variation
3(m2)?’ of U (at any fixedL) is similar to that in the static Ising
transitions U=2/3 well inside the ordered phase ahbd
where(m() is the ensemble average of,,. (mZ) is simi-  —0 well within the disordered phagén fact, U* value in

larly defined. The cumulant here behaves somewhat dif- this oscillatory field case was found to be the same as that in
ferently, compared to that in static and other transitionsthe static case, indicating the same universality dlasswe
Deep inside the ordered phasg=1 andU—2/3. For other observe different behavior in the field-pulse-induced
(say, statictransitions the order parameten() goes to zero magnetization-reversal transition case.
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FIG. 3. Behavior olU near the transition, driven bfg) h,, at a fixed value off (=2.0) andAt (=5) with sequential updatingb) T at
a fixed value ofh, (=0.5) andAt (=10) with sequential updating, ar(d) h, at a fixed value off (=1.5) andAt (=5) with random
updating, for different., averaged over 1000—6000 initial configurations. The fluctuations are smaller than the symbol size. The insets show
the typical behavior of the magnetization, at the time of withdrawal of the field pulse by varyitg h, at a fixedT and At, for L
=50 and 400,b) T at a fixedh, andAt, for L=50 and 200/c) h, at a fixedT andAt, for L=50 and 200;m,,=0 at the transition point.

We observe two kinds of distinct behavior of the cumulant It might be noted that in the low temperature aAd
U. Typically, for low temperature and low pulse-duration re- regions, there seems to be significant finite-size scaling of
gion (see the inset in Fig.)lof the magnetization-reversal the transition tn,=0) point [see the insets of Figs.(&-
phase boundary, the cumulant crossing for different systerp(c)]. in fact, in Fig. Zd), the finite-size scaling analysis of
sizesL occur atU* =0.42-0.46(see Fig. 2 As mentioned g6 data is presented. For the other cases, there seems to be
already, we have checked these results for both sequentlﬁl

X o significant finite-size effect on the transition polif.
and random updating. Specifically, far=0.5 andAt=5, . . N L e
[see Fig. 2o)], we find the transition point value df, insets of Figs. @G)—3(c)], indicative of a mean-field nature of

~26, to be smaller than the value=0.9) for sequential the transition in this range. It may be noted that to compare

updating. However, the value &f* at this transition point is the f|n|_te-5|ze EﬁECtS! we normalize the Parameﬁm M
again very close to about 0.44. This indicates that updatin y thel.r ranges r.eqw-red for ull mggnenzatlon r_eversr_al. In
rule does not affect the universality clag$*( value, as long act, this weak finite-size effect for h|g‘hand4t_ regions did .
as the proper region of the phase boundary is considered. FBPt 1€ad to any reasonable value for the fitting exponent in
relatively higher temperature and pulse-duration region ofh€ scaling analysis. . . _
the phase boundary, the crossingbfor different L values For the static transition of the pure two-dimensional Ising
occur forU*=0, . This is true for both sequentidFigs. System,U*=0.6107[7-9]. For low temperaturéand low
3(a)-3(b)] and randon{Fig. 3(c)] updating. It may be noted At) regions of the magnetization-reversal phase boundary,
that the phase boundary changes with the updating rule, dbe observed values &f* (in the range 0.42-0.4@re con-

the system relaxation timévhich matches with the pulse siderably lower than the above mentioned value for the static
width at the phase boundaris different for sequential and transition. There is not enough indication of finite-size effect
random updating7]. in the U* value either(cf. Ref. [2]). This suggests a new
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universality class in this range. Also, the finite-size scalingfield theory applicationg3,5] indicated time and lengtfEgs.
study for the effective transition points hefrgee Fig. 2d)]  (5) and (7), respectively scale divergences at these phase
gives a correlation length exponent value=(1.4) larger boundaries. Extensive Monte Carlo studies for the fluctua-
than that of the static transition. For comparatively highertions in the order parametém,| and internal energies, etc.,
temperaturegand high At), the U*=0, at the crossing showed prominent divergences along the phase boundaries
point. Such small value of the cumulant at the crossing poinf6]. Fourth-order cumulant) of the order parameter distri-
can hardly be imagined to be a finite-size effect; it seemsution is studied here for different system siz@mpto L
unlikely that one would get here also the same universality=800) around the phase boundary region. The crossing
class andU* value will eventually shoot up t&J*=0.44  point of the cumulantfor different system sizesgives the

(for larger system siz¢sas for the other range of the transi- transition point and the valu&* of the cumulant at the
tion. On the other hand, such low valueldf might indicate transition point indicates the universality class of the transi-
a very weak singularity, as indicated by the mean-field caltion. In the low temperature and low pulse width range, the
culations[3] mentioned in the Introduction. In fact, even for U* value is found to be around 0.44ee Figs. &)—2(c)].

the static transition, as the dimensionality increases, and ththe prominent discripancy with the* value (=0.61) for
singularity becomes weakéronverging to mean-field expo- the static transition in the same model in two dimensions
nentg with increasing lattice dimension, the cumulant cross-indicates a new universality class for this dynamic transition.
ing pointU* decreasesy*=0.61 ind=2 toU*=0.44 in  Indeed, the finite-size scaling analy§i&g. 2(d)] suggests a
d=4) [9]. We believe the mean-field transition behavior different (largep value of the correlation length exponent
here, as mentioned earlier, is even weaker in this dynamialso. For comparatively higher temperatures and higher pulse
case as reflected by the valu& =0, , corresponding to a widths, theU* values are very close to zefsee Figs. G)—

logarithmic singularity{as in Eqs.(5) and(7)]. 3(c)], and the transitions here seem to fall in a mean-field-
like weak-singularity universality class similar to that ob-
IV. SUMMARY AND CONCLUSIONS tained earlief3], and indicated by Eq$5) and(7). Here, the

finite-size effects in the order parameter and the transition

The universality class of the dynamic magnetization-pgint are also observed to be comparatively wedkee in-
reversal transition, induced by a competing pulse, in an Isingets of Fig. 3

model on a square lattice, below its static ordering tempera-
ture, is studied here using Monte Carlo simulations. Both
sequential and random updating have been used. The phase
boundary at any (<T2) is obtained first in thé-At plane.
They, of course, depend on the updating rule. The phase The authors are grateful to Bernard Nienhuis for some of
boundaries obtained compare well with the nucleation theorjis insightful questions regarding the transition and to Arka-
estimatehIn At=const along the boundaf$]. The mean- jyoti Misra for useful comments and discussions.
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